Posted in Mathematics

A long way from Euclid by Constance Reid

By Constance Reid

Mathematics has come some distance certainly within the final 2,000 years, and this consultant to trendy arithmetic strains the interesting course from Euclid's Elements to modern suggestions. No historical past past straight forward algebra and aircraft geometry is important to appreciate and get pleasure from writer Constance Reid's basic, direct reasons of the mathematics of the limitless, the paradoxes of element units, the "knotty" difficulties of topology, and "truth tables" of symbolic good judgment. Reid illustrates the ways that the quandaries that arose from unsolvable difficulties promoted new rules. Numerical thoughts elevated to house such thoughts as 0, irrational numbers, destructive numbers, imaginary numbers, and endless numbers.
Geometry complicated into the widening territories of projective geometry, non-Euclidean geometries, the geometry of n-dimensions, and topology or "rubber sheet" geometry. greater than eighty drawings, built-in with the textual content, help in cultivating a take hold of of the summary foundations of contemporary arithmetic, the quest for actually constant assumptions, the popularity that absolute consistency is impossible, and the belief that a few difficulties can by no means be solved.

Show description

Read Online or Download A long way from Euclid PDF

Similar mathematics books

Probability Theory: A Comprehensive Course (Universitext) (2nd Edition)

This moment version of the preferred textbook incorporates a accomplished path in smooth chance thought. total, probabilistic suggestions play an more and more very important function in arithmetic, physics, biology, monetary engineering and desktop technological know-how. they assist us in figuring out magnetism, amorphous media, genetic range and the perils of random advancements at monetary markets, and so they consultant us in developing extra effective algorithms.

Mathématique Terminale A

Ce manuel est destiné aux élèves de Terminale A (littéraire), avec strategies A_3 ou A_4. Il est conforme aux programmes de 1966.

Table des matières :

Partie I. — Notions générales

1. Le raisonnement logique
    1. Notions premières. Axiomes
    2. Théories. Raisonnement logique
    3. Opérations logiques élémentaires
    4. Théorèmes de logique
    5. Méthodes de démonstration
    6. Applications

2. Notions sur les ensembles
    1. Les ensembles
    2. Sous-ensembles. Inclusion. Implication logique
    3. Égalité de deux ensembles et équivalence logique
    4. Complémentaire d’un sous-ensemble et négation logique
    5. Ensemble vide
    6. Les quantificateurs
    Construction d’ensembles à partir d’ensembles donnés
        7. Ensemble des events d’un ensemble
        8. Partition d’un ensemble
        9. Intersection de deux ensembles et conjonction logique
        10. Réunion de deux ensembles et disjonction logique
        11. Différences de deux ensembles
        12. Différence symétrique de deux ensembles et disjonction exclusive

3. family binaires
    1. Couple
    2. Produit cartésien de deux ensembles
    3. Graphes
    4. family binaires
    5. Composition des kinfolk binaires

4. family members binaires dans un ensemble
    1. relatives binaires réflexives
    2. kin binaires symétriques
    3. kin binaires transitives
    4. kin binaires antisymétriques
    5. family d’équivalence
    6. periods d’équivalence
    7. family d’ordre

5. Fonctions
    1. part (ou coupe) d’un graphe
    2. Fonctions (ou applications)
    3. Représentation graphique des fonctions et des applications
    4. Composition de deux applications
    5. Qualités d’une application
    6. program réciproque d’une bijection
    7. Équations
    8. Suites

6. Lois de composition interne
    1. Lois de composition interne dans un ensemble
    Qualités d’une loi de composition interne
        2. Associativité
        3. Commutativité
        4. Distributivité d’une opération sur une autre
    Éléments remarquables
        5. Éléments neutres
        6. Éléments symétriques
        7. Éléments réguliers

7. Structures : groupes, anneaux, corps
    Structure de groupe
        1. Définition
        2. Propriétés
    Structure d’anneau
        3. Définition
        4. Propriétés
    Structure de corps
        5. Définition
        6. Propriétés

8. buildings d’ordre
    Ensembles ordonnés
        1. events remarquables
        2. Éléments remarquables
        3. buildings remarquables : chaînes, treillis, simplexes
    L’ensemble ℝ ordonné par l. a. relation ⩽
        4. Relation d’ordre ⩽ dans ℝ
        6. Relation d’ordre et opération dans ℝ

9. Nombres cardinaux
    1. Ensembles équipotents
    2. Cardinal d’un ensemble
    3. Relation d’ordre entre nombres cardinaux
    4. Cardinal de A ∪ B
    5. Cardinal de A × B

10. Diagrammes séquentiels
    1. Diagrammes séquentiels
    2. Arbre des exponentielles
    3. Arbre des factorielles

11. examine combinatoire
    1. Permutations
    2. Arrangements
    3. Combinaisons
    4. Simplexes
    5. Exemples de problèmes de dénombrement

12. Le corps des nombres complexes
    1. Axiomes de los angeles théorie
    2. Recherche des stipulations nécessaires
    3. L’ensemble des nombres complexes
    4. Le groupe commutatif (ℂ, +)
    5. Le groupe commutatif (ℂ*, . )
    6. Le corps (ℂ, +, . )
    7. Retour sur le problème posé

Partie II. — Dérivées des fonctions numériques

13. Généralités sur les fonctions numériques
    1. Fonctions numériques
    2. L’ensemble ℝ des nombres réels
    3. Parité. Périodicité
    4. Opérations dans l’ensemble des fonctions numériques
    5. Représentation graphique d’une fonction numérique
    6. edition des fonctions numériques
    7. Extrémums relatifs
     eight. Exemples
     nine. Définitions
     10. Continuité en un point
     eleven. Fonctions discontinues en un point
    Fonction réciproque d’une fonction proceed et strictement monotone sur un segment
     12. Propriété des fonctions numériques keeps sur un segment
     thirteen. Propriétés des fonctions keeps et strictement monotones
     14. Fonction réciproque
     15. Extension de los angeles définition de los angeles fonction réciproque

14. Dérivabilité des fonctions numériques
    Nombre dérivé
        1. Dérivabilité en un point
        2. Nombre dérivé d’une fonction en un point
        3. Exemples
        4. Contre-exemples
        5. Propriété des fonctions dérivables en un point
    Interprétation géométrique des nombres dérivés et des différentielless
        6. Interprétation géométrique des nombres dérivés
        7. Interprétation géométrique des différentielles
    Fonctions dérivées
        8. Fonction dérivée première
        9. Retour sur l. a. notation différentielle

15. Dérivées des fonctions usuelles
    1. Méthode générale
    2. Dérivée première d’une fonction « constante »
    3. Dérivée première de l. a. fonction identique
    4. Dérivée première de l. a. fonction « carrée »
    5. Dérivée première de l. a. fonction « cube »
    6. Dérivée première de l. a. fonction « puissance quatrième »
    7. Dérivée première de los angeles fonction « inverse de… »
    8. Dérivée première de l. a. fonction « racine carrée de… »
    9. Dérivée première de l. a. fonction sinus
    10. Dérivée première de l. a. fonction cosinus
    11. Dérivée première de los angeles fonction tangente
    12. Dérivées des fonctions x → sin(ax + b)
    13. Tableau des dérivées premières de fonctions numériques usuelles

16. Opérations sur les fonctions dérivables
    1. Dérivabilité (rappel)
    2. Dérivée d’une somme de fonctions dérivables
    3. Dérivée première de kf (k constante, f fonction dérivable)
    4. Dérivée d’un produit de fonctions dérivables
    5. Dérivée de l. a. fonction « puissance n-ième »
    6. Dérivée du quotient de deux fonctions dérivables
    7. Dérivée première de los angeles racine carrée d’une fonction dérivable
    8. En résumé

17. software des dérivées à l’étude des adaptations d’une fonction
    Sens de edition d’une fonction et signe de ses nombres dérivés
        1. Signe des nombres dérivés d’une fonction monotone
        2. Extrémum d’une fonction en un point
        3. Signe des nombres dérivés et sens de edition d’une fonction
        4. Plan d’étude d’une fonction numérique
    Exemples d’étude de fonctions
        5. Fonctions trinômes du moment degré
        6. Fonctions homographiques
        7. Fonctions polynômes du threeᵉ degré
        8. Fonctions bicarrées
        9. Fonctions f telles que f(x) = (ax² + bx + c) / (a’x² + b’x + c’)
        10. Fonctions trigonométriques

Partie III. — Primitives des fonctions numériques

18. Primitives d’une fonction numérique
    1. Définition d’une fonction primitive
    2. Primitives d’une fonction
    3. Primitive prenant une valeur donnée pour x₀
    4. Recherche de quelques primitives
    5. Recherche de primitives

19. Aires de domaines plans
    1. Exemples
    2. Théorème fondamental
    3. Extension du théorème fondamental
    4. Calcul d’aires de domaines plans

Partie IV. — Fontions logarithmes. — Fonctions exponentielles

20. Fonction logarithme népérien
    1. Définition
    2. Interprétation géométrique
    3. Propriété fondamentale de los angeles fonction Log
    4. Conséquences de los angeles propriété fondamentale
    5. Étude de los angeles fonction logarithme népérien
    6. Un encadrement du nombre e

21. Fonction exponentielle de base e
    1. Définition
    2. Propriété fondamentale de los angeles fonction exponentielle
    3. Conséquences de los angeles propriété fondamentale
    4. Notation définitive
    5. Étude de l. a. fonction exponentielle de base e
    6. Tableau de version et représentation graphique

Partie V. — Probabilités

22. L’algèbre des événements
    1. Événements
    2. class des univers
    3. Algèbre des événements
    4. Simplexe et événements

23. Axiomes des probabilités
    Premier axiome des probabilités
        1. Exemple
        2. Probabilité et mesure
        3. Propriétés fondamentales des probabilités
        4. Probabilité sur un univers fini
        5. Étude d’un exemple
    Second axiome des probabilités
        6. Probabilités conditionnelles
        7. Indépendance en probabilité
        8. Schémas de tirages probabilistes
        9. Exercices résolus

Extra resources for A long way from Euclid

Example text

Die quadratischen p−1 Reste sind daher genau die Wurzeln des ersten Faktors x 2 − 1, folglich p−1 2 m¨ussen die p−1 +1 2 Nichtreste die Nullstellen des zweiten Faktors x sein. Vergleichen wir dies mit der Definition des Legendre-Symbols, so erhalten wir die folgende wichtige Beziehung. Als Beispiel erhalten wir f¨ur p = 17 und a = 3, 38 = (34 )2 = 812 ≡ (−4)2 ≡ −1 (mod 17), w¨ahrend wir f¨ur a = 2 28 = (24 )2 ≡ (−1)2 ≡ 1 (mod 17) berechnen. Also ist 2 ein quadratischer Rest, w¨ahrend 3 ein Nichtrest ist.

Weil dieser Trick so erfolgreich war, wollen wir ihn gleich noch einmal verwenden. Satz 2. π 2 ist irrational. Beweis. Wir nehmen an, dass π 2 = Diesmal verwenden wir das Polynom a b ist, f¨ur ganze Zahlen a, b > 0. F (x) := bn π 2n f (x) − π 2n−2 f (2) (x) + π 2n−4 f (4) (x) ∓ . . , das F ′′ (x) = −π 2 F (x) + bn π 2n+2 f (x) erf¨ullt. Mit Teil (iii) des Lemmas sehen wir, dass F (0) und F (1) ganze Zahlen sind. π ist nicht rational, aber es gibt f¨ur π gute Approximationen“ durch Br¨uche ” — einige von diesen sind schon seit der Antike bekannt: 22 = 3,142857142857...

At die Aquivalenzklassen, die mehr als ein Element enthalten. Aus unserer Annahme wissen wir, dass t ≥ 1 ist. Da t |R∗ | = |Z ∗ | + k=1 |Ak | gilt, haben wir die so genannte Klassenformel t qn − 1 = q − 1 + k=1 qn − 1 q nk − 1 n (1) ur alle k gilt. bewiesen, in der 1 < qqnk−1 −1 ∈ N f¨ Mit (1) haben wir die Algebra verlassen und sind zur¨uck bei den nat¨urlichen Zahlen. Als N¨achstes behaupten wir, dass aus q nk − 1 | q n − 1 notwendigerweise nk | n folgt. Schreiben wir n¨amlich n = ank + r mit 0 ≤ r < nk , so impliziert q nk − 1 | q ank +r − 1, dass q nk − 1 | (q ank +r − 1) − (q nk − 1) = q nk (q (a−1)nk +r − 1) 37 Jeder endliche Schiefk¨orper ist ein K¨orper und somit q nk − 1 | q (a−1)nk +r − 1 gilt, weil q nk und q nk − 1 relativ prim sind.

Download PDF sample

Rated 4.50 of 5 – based on 37 votes